1 RStudio workflow
1.1 Graphical user interface (GUI)
Let’s begin by exploring RStudio. When you open the program, it should look something like this:
1.1.1 Preferences
Under the Preferences
or Global Options
menu items, you can customize RStudio. We recommend not using the following options:
- Restore .RData into workspace at startup (Do not activate this)
- Save workspace to .RData on exit (Never) (Do not activate this)
It’s best to start each session with an empty workspace.
You can change many settings relating to appearance and layout here.
1.1.2 Panes
The RStudio GUI is composed of several panes. On the left is the R console (orange).
This is where you can directly interact with R. If you enter a command here, and
press Enter
, the command will be interpreted by R.
The >
symbol is called the R prompt. You can try to use R as a calulator:
Top right (yellow): here, we have two panes Environment and History. In the Environment pane RStudio shows us all variables, datasets and functions that are available in the current session. If you click on the Global Environment drop-down menu, you can see which packages have been loaded.
THe History pane shows a history of all commands that we have entered.
Bottom right (blue): here, we have the Files (file manager), Plots, Packages and Help Viewer panes.
Using the file manager, you can switch working directories and open files:
If you change working directories using the file manager, R will display the command in the console. In this case, the R command is setwd(…)
. By entering getwd()
, you can ask R which directory you are currently in.
1.2 Packages
Before we start, we need to install some packages. Packages provide
functionality that is not available in base R. We will need packages for
manipulating data (tidyr
, dplyr
), for importing SPSS files (haven
) and for
plotting (ggplot2
).
We can install all of these with the meta-package tidyverse
using the command:
install.packages("tidyverse")
You only need to do this one time - once packages are installed, the are stored on your computer in a place where
R can find them. However, to make the available in an R session, we need to
load packages using the library
command:
library(tidyverse)
We can also use the GUI:
It’s a good idea to keep all packages up to date. You can use (Update) in the Packages pane or, if you prefer:
update.packages(ask = FALSE)
Please install the tidyverse
packages.
R Packages are hosted on a server: The Comprehensive R Archive Network, or CRAN. Have a look at Task Views; these show a collection of packages for various topics, e.g. psychometrics CRAN Task View: Psychometric Models and Methods.
1.3 Help
In case you ever get stuck, RStudio has a built-in Help viewer:
You can either enter a search term in the Help Viewer, or you can browse the packages to access their help pages.
Look for the package dplyr
and click on it. You will a link to User guides, package vignettes and other documentation
. Vignettes are introductory manuals.
You can also access help directly in the console:
This will open the help page for the mean
function. You can also enter ?mean
.
A very useful source of information is the Q & A website Stackoverflow - here you will discover you are not the first person to encounter a particular problem, and that someone has most likely already figured out a solution.
1.4 Working with RStudio
1.4.1 Projects
We recommend that you always work in a project. A project specifies your working directory, workspace, history, and source documents.
You can either create a new project under the File
menu (“File -> New
Project…”), or download a zipped project from
here. We
recommend keeping your data in separate sub-directory. This projects contains a
directory called ‘data’. You will need to unzip, or extract, the contents of the
zip file before you can open it in RStudio. Note that the file explorer in
Windows will allow you to navigate the contents of a zipped directory. You will
need to explicitly extract its contents, because Windows will leave the file
compressed unless instructed otherwise.
1.4.2 Console
You can either enter commands directly into the console, or write in a text file, and then send the command to the console.
Working in the console is ok for quickly trying things out, but usually it is better to use text files.
This ensures that you keep a record of what you did, and which order you did it in. This is very important for ensuring reproducibility, not just for other researchers, but also for your future self.
You can access your History in the console using the CMD
+ Up
or CTRL
+ Up
keys. You can access your latest commands in the console using the Up
key (several times for earlier commands). Once you used the Up
key (several times) you can use the Down
key to access later commands. This is useful when you want to do something again or do something very similar by adjusting earlier commands.
If you forget to complete an R command, you might see this:
> mean(x
+
This means that R is waiting for you to complete your command. In this case, you
can either enter )
or press ESCAPE
or CTRL-C
. With )
you correctly finish the
command, with ESCAPE
or CTRL-C
you get a new prompt and can start over.
1.4.3 R Script
Let’s open an R script (text file with the file ending .R
). Enter the R code:
Then you can select the code, and click on Run button. This will evaulate the
selected code, and you will see the output in the console. Instead of clicking
on the button, you can use the shortcut CTRL-Enter
.
Enter and run the following code: x <- c(101, 105, 99, 87, 102, 98)
You just defined a vector (or a variable). You will see the following in the output:
> x <- c(101, 105, 99, 87, 102, 98)
and in the Environment you will see that x
is a num [1:6]
. This means that x
is a numeric vector with length 6, i.e. consisting of 6 elements.
Try running: boxplot(x)
You should see a box plot in the Plots pane.
1.4.4 Using R Notebooks
R Notebooks are interactive RMarkdown documents (RMarkdown is a simple markup language). These can display text, code and graphics, all in the same document.
Open a new notebook file:
You can save the notebook with the file ending .Rmd
.
Notebooks contain both Markdown text and code chunks
. These code chunks can be evaluated.
When you press the green arrow the output will appear right beneath the code chunk
.
The whole document can be compiled by clicking on Preview. The first time you do this, RStudio will ask you to install some missing packages (you should do this). After compilation, you will see an HTML document in the Viewer pane. You can also create Word documents or PDFs:
1.4.5 Tab completion
RStudio has a very useful feature: tab completion. If you enter R commands in the console or in the text editor, you will automatically be provided you with a list of possible completions. We can also get suggestions, including possible arguments of functions, by pressing the tab key.
We can also use this feature to look for functions inside packages. For example,
we can write a package name, followed by ::
and the press tab
. RStudio will
give us a list of functions from that package. To get a list of all functions
starting with the letter f
from the dplyr
package:
dplyr::f
1.4.6 Key combinations
We will need the following symbols:
[ ] Square braces
{ } Curly braces
$ Dollar key
# Hash (pound) key
~ Tilde (for formula notation)
| Vertical bar
` Backtick
Unfortunately, these can be somewhat difficult to find on German/Swiss keyboards.
Take a few minutes to familiarize yourself with your keyboard. You will need to use the ALT
key for some of the symbols.
We entered
3/4
, and we got[1] 0.75
as output. The[1]
means that the output starts with the first element of a vector.